High nitrogen supply alleviates reduced sugarbeet growth caused by hydrochar application

Ana Gajić and Heinz-Josef Koch
Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany

Introduction
The process of hydrothermal carbonization (HTC) converts biomass into a carbon (C) rich product named hydrochar. It is assumed to have beneficial effects on soil properties and plant growth, but detailed studies are lacking. The objective of our study was to investigate the effect of hydrochar incorporated into arable soils on (i) soil mineral nitrogen (N_{min}) content and (ii) sugarbeet (Beta vulgaris L.) growth.

Material and Methods
- A greenhouse trial (Cambisol, 1 kg pot⁻¹) was conducted with sugarbeet as test plant (5 plants pot⁻¹).
- Two hydrochars (equivalent to 30 t ha⁻¹) processed from sugarbeet pulp (C/N 38) and draff (C/N 16) at 190 °C over 12 h were tested against an untreated control (nutrients were in optimal range for early sugarbeet growth).
- Mineral N fertilizer level was varied: 0, 100, 200 mg N kg⁻¹ soil.
- Four weeks growing period (15 °C, 8 h artificial light, 80% maximal soil water holding capacity).
- Soil and plant analyses: N_{min} at the beginning and the end of the trial, seedling emergence, single plant yield, N uptake.

Results
- Seedling emergence was not affected by hydrochar treatment and N fertilizer level (data not shown).
- Both hydrochars reduced initial sugarbeet growth (Fig. 1) and N uptake (Fig. 2), especially when hydrochar-S wide in C/N ratio (38) was combined with a low N fertilizer level (typical N deficiency symptoms occurred).
- Higher N supply partly (100 mg N kg⁻¹ soil) or completely (200 mg N kg⁻¹ soil) compensated for the reduced seedling growth (Fig. 1).
- At the N₀ fertilizer level, no extractable N_{min} was present at the end of the trial in hydrochar-S treatment, while in hydrochar-D even more N_{min} was extracted than in the control (Tab. 1), thus suggesting re-mineralization of previously immobilized N when hydrochar-D with a low C/N ratio (16) was applied.

Conclusions
Our results suggest that hydrochar can decrease plant available N due to N immobilization. Other potential causes for the reduced N availability and observed early growth reduction need to be studied more detailed.