Diese Seite drucken

Impact on soil physical properties of using large-grain legumes for catch crop cultivation under different tillage conditions

  • Autor/in: Rücknagel. J.; P. Götze, B. Koblenz, N. Bachmann, S. Löbner, S. Lindner, J. Bischoff, O. Christen
  • Jahr: 2016
  • Zeitschrift: European Journal of Agronomy 77
  • Seite/n: 28-37


In Central Europe, various plant species including large-grain legumes and their mixtures are grown as catch crops, particularly between grains harvested early and subsequent summer crops. This article investigates the question of how soil structure in the topsoil is influenced when catch cropping with large-grain legumes (experimental factor A: without catch crop, with catch crop) under different ploughless tillage conditions during catch crop seeding (experimental factor B: deep tillage/25–30 cm, shallow tillage/8–10 cm). Five one-year trials were performed using standard machinery at various sites in Germany. Soil core samples extracted from the topsoil in the spring after catch crop cultivation served to identify air capacity, saturated hydraulic conductivity and precompression stress. The above-ground and below-ground biomass yields of the catch crops were also determined at most of the sites. In addition, the soil compaction risk for the working steps in the experiments was calculated using the REPRO model. The dry matter yield of the catch crops varied considerably between the individual trial sites and years. In particular, high levels of dry matter were able to form in the case of early seeding and a sufficient supply of precipitation. The soil structure was only rarely affected positively by catch crop cultivation, and catch crops did not contribute in the short term to loosening already compacted topsoils. In contrast, mechanical soil stresses caused by driving over the ground and additional working steps used in cultivating catch crops often led to lower air capacity in these treatments. This is consistent with the soil compaction risks calculated using the REPRO model, which were higher in the treatments with catch cropping. Catch crop cultivation also only resulted in improved mechanical stability at one location. The positive effect of deep ploughless tillage on air capacity and saturated hydraulic conductivity, however, became more clearly evident regardless of catch crop cultivation. In order for catch crop cultivation with large-grain legumes to be able to have a favourable impact on soil structure, it is therefore important that cultivating them does not result in any new soil compaction. In the conditions evaluated, deep tillage was more effective at loosening compacted topsoil than growing catch crops.
FaLang translation system by Faboba