• Forschung - einfache Suche
  • Projektsuche
  • Publikationssuche

Fluorescent labelling of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus for co- and superinfection experiments in Nicotiana benthamiana

  • Autor/in: Laufer, M., H. Mohammed, D. S. Christ, D. Riedel, E. Maiss, M. Varrelmann, S. Liebe
  • Jahr: 2018
  • Zeitschrift: Journal of General Virology 99
  • Seite/n: DOI 10.1099/jgv.0.001122
  • Stichworte: coinfection, BSBMV, fluorescent labelling, read-through domain, superinfection, BNYVV

Abstract

Infectious full-length clones of Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV), both genus Benyvirus, were used for fluorescent labelling with the objective to study their interaction in coinfection and superinfection experiments. Fluorescent labelling was achieved by replacing a part of the RNA2 encoded coat protein read-through domain with either GFP or mRFP fluorescent marker proteins. This resulted in a translational fusion comprising the coat and the fluorescent protein. The labelled viruses were infectious and moved systemically in Nicotiana benthamiana, producing wild-type-like symptoms. Virus particles could be observed by electron microscopy, demonstrating that the viral read-through domain is dispensable for particle formation. Coinfection experiments revealed a spatial separation of differentially labelled populations of both identical and different Benyvirus species after N. benthamiana agro-inoculation. Identical observations were obtained when Tobacco rattle virus (TRV) was differentially labelled and used for coinfection. In contrast, coinfections of BSBMV with Potato virus X (PVX) or TRV resulted in many co-infected cells lacking spatial separation. Micro-projectile co-bombardment of N. benthamiana leaves revealed that two differently labelled populations of the same virus co-infected only a few cells before starting to separate. In superinfection experiments with N. benthamiana, BSBMV and BNYVV were unable to establish a secondary infection in plants that were previously infected with BNYVV or BSBMV. Taken together, this is the first work to describe the interaction between two economically important Benyviruses using fluorescence-labelled full-length clones.
FaLang translation system by Faboba
IfZ - Institut für Zuckerrübenforschung · Holtenser Landstr. 77 · 37079 Göttingen · mail@ifz-goettingen.de · Impressum · Datenschutz previous_page